If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-18n=80
We move all terms to the left:
n^2-18n-(80)=0
a = 1; b = -18; c = -80;
Δ = b2-4ac
Δ = -182-4·1·(-80)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{161}}{2*1}=\frac{18-2\sqrt{161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{161}}{2*1}=\frac{18+2\sqrt{161}}{2} $
| 2x=181.5 | | n/10+11=13 | | 51.67+w=810.96 | | 25x+5+17x+7=180 | | 9.1+u/7=-8.4 | | 7+16y=11;y=¼ | | 3a-27=90 | | 4w–12=36–2w | | (6x-1)(5x+28)=180 | | 3n+24+5n+28=180 | | 4(x-3)+6=24 | | 9(2k+3)+2=11(k+192) | | 3(x–8)+5x=2(2x+6) | | 5x-3x-17=x+2 | | -8x=-4x+x^2 | | 4(x-3)=6=24 | | 7^2x*7^(2x-2)=343 | | 2v+14=-15v+9+7v | | (7p+1)(7p-1)= | | 7x+12=10x+5 | | 11n+22=26 | | 34x=18x-96 | | 4(x-8)=3x-22 | | 10(-x^2+16x-10)=0 | | .2=30/x | | 30+2x=8-9x | | 4w=-10+5w | | 3a-2/4=; | | t=-4=-11 | | x+4x+6x=121 | | 53+x=42 | | x^2+5x=6x+6 |